答案

证明:(1)∵△DCE和△ACB是等腰直角三角形,
∴DC=CE,AC=CB,∠DCE=∠ACB=90°,
∴∠DCE-∠7=∠ACB-∠7,
∴∠5=∠6,
在△DAC和△EBC中,
,
∴△DAC≌△EBC(SAS),
∴BE=AD;
(2)∵△DAC≌△EBC,
∴∠1=∠2,
∴∠DCE=90°,
∴∠1+∠3=90°,
∵∠3=∠4,
∴∠2+∠4=90°,
∴∠EBD=180°-90°=90°,
即BE⊥AD.

证明:(1)∵△DCE和△ACB是等腰直角三角形,
∴DC=CE,AC=CB,∠DCE=∠ACB=90°,
∴∠DCE-∠7=∠ACB-∠7,
∴∠5=∠6,
在△DAC和△EBC中,
,
∴△DAC≌△EBC(SAS),
∴BE=AD;
(2)∵△DAC≌△EBC,
∴∠1=∠2,
∴∠DCE=90°,
∴∠1+∠3=90°,
∵∠3=∠4,
∴∠2+∠4=90°,
∴∠EBD=180°-90°=90°,
即BE⊥AD.