试题
题目:
等腰直角三角形ABC中,∠BAC=90°,BD平分∠ABC交AC于点D,若AB+AD=8cm,则底边BC上的高为
4
4
cm.
答案
4
解:作DE⊥BC于E,
因为BD平分∠ABC,根据角平分线上的点到角的两边的距离相等,
设AC=AB=x,则DE=AD=8-x,CD=x-(8-x),
在等腰直角三角形CDE中,根据勾股定理,
2(8-x)
2
=[x-(8-x)]
2
解得x=4
2
,
作BC边上的高AF,
AF=ABsin45°=4
2
×
2
2
=2×2=4,
则底边BC上的高为4cm.
故答案为4.
考点梳理
考点
分析
点评
勾股定理;等腰直角三角形.
利用等腰直角三角形两直角边相等,结合勾股定理解答.
解答本题的关键是作出底边BC上的高ED,然后列方程解答.
找相似题
(2013·宿迁)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )
(2010·雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是( )
(2010·攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是( )