答案

解:(1)证明:连接OC.
∵OA=OC
∴∠A=∠ACO(3分)
∵OE⊥AC∠FCA=∠AOE
∴∠A+∠AOE=∠ACO+∠FCA=90°(5分)
∴∠FCO=90°
∴FD是⊙O的切线(7分)
(2)连接CB.
∵AO=OB,OE⊥AC
∴AE=EC,OE∥CB(3分)
AO:AB=OE:CB=1:2,∠COE=∠OCB,∠CBE=∠BEO,
∴△EGO∽△BGC(5分)
OG:GC=OE:BC=1:2
∴CG=6
半径OC=9(7分)

解:(1)证明:连接OC.
∵OA=OC
∴∠A=∠ACO(3分)
∵OE⊥AC∠FCA=∠AOE
∴∠A+∠AOE=∠ACO+∠FCA=90°(5分)
∴∠FCO=90°
∴FD是⊙O的切线(7分)
(2)连接CB.
∵AO=OB,OE⊥AC
∴AE=EC,OE∥CB(3分)
AO:AB=OE:CB=1:2,∠COE=∠OCB,∠CBE=∠BEO,
∴△EGO∽△BGC(5分)
OG:GC=OE:BC=1:2
∴CG=6
半径OC=9(7分)