试题
题目:
(2007·丰台区二模)已知:如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上的一点,AE⊥DC,交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是⊙O的切线;
(2)若∠ADC=30°,AC=6,求BC的长.
答案
(1)证明:连接OC,则∠CAO=∠ACO.
∵AC平分∠EAB,∴∠EAC=∠CAO.
∴∠EAC=∠ACO.∴AE∥OC.(1分)
∴∠DCO=∠E=90°,即DE⊥OC.
∴DE是⊙O的切线.(2分)
(2)解:∵∠ADC=30°,
∴∠EAD=60°.
∴∠BAC=
1
2
∠EAD=30°(3分)
∵AB是⊙O的直径,∴∠ACB=90°(4分).
∴BC=AC·tan∠BAC
=6×tan30°
=2
3
(5分)
(1)证明:连接OC,则∠CAO=∠ACO.
∵AC平分∠EAB,∴∠EAC=∠CAO.
∴∠EAC=∠ACO.∴AE∥OC.(1分)
∴∠DCO=∠E=90°,即DE⊥OC.
∴DE是⊙O的切线.(2分)
(2)解:∵∠ADC=30°,
∴∠EAD=60°.
∴∠BAC=
1
2
∠EAD=30°(3分)
∵AB是⊙O的直径,∴∠ACB=90°(4分).
∴BC=AC·tan∠BAC
=6×tan30°
=2
3
(5分)
考点梳理
考点
分析
点评
专题
切线的判定与性质;解直角三角形.
(1)连接OC.欲证明DE是⊙O的切线,只需证明DE⊥OC即可;
(2)在直角三角形ADE中可以求出∠EAD=60°,根据已知条件“AC平分∠EAB”推知∠BAC=30°;又由直径所对的圆周角是直角可以得到∠ACB=90°;最后在直角三角形ABC中利用三角函数值来求BC的长度.
本题考查了切线的判定与性质、解直角三角形;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.
证明题.
找相似题
(2012·桂平市三模)如图,直线AC∥BD,⊙O与AC和BD分别相切于点A和点B.点M和点N分别是AC和BD上的动点,MN沿AC和BD平移.⊙O的半径为1,∠1=60°.下列结论错误的是( )
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
在正方形ABCD中,E为AD中点,AF丄BE交BE于G,交CD于F,连CG延长交AD于H.下列结论:
①CG=CB;②
HE
BC
=
1
4
;③
EG
GF
=
1
3
;④以AB为直径的圆与CH相切于点G,其中正确的是
①②③④
①②③④
.
如图,以△ABC的直角边AB为直径的半圆O与斜边AC交于点D,E是BC边的中点.若AD、AB的长是方程x
2
-6x+8=0的两个根,则图中阴影部分的面积为
4
3
-
4
3
π
4
3
-
4
3
π
.
(2013·雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)