试题
题目:
(2008·平谷区一模)如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若∠A=30°,AB=8,F是OB的中点,连接DF并延长交⊙O于G,求弦DG的长.
答案
(本题6分)
(1)证明:连接OD.
∵OA=OD,∴∠A=∠1.
∵BA=BC,∴∠A=∠C.
∴∠1=∠C.
∵DE⊥BC,垂足为E,
∴∠2+∠C=90°.
∴∠1+∠2=90°.
∴∠ODE=90°.
∵点D在⊙O上,
∴DE是⊙O的切线.(3分)
(2)解:连接BD.
∵AB是⊙O的直径,
∴∠ADB=90°.
∵∠A=30°,AB=8,
∴DB=4,∠ABD=60°.(4分)
∵OD=OB,
∴△ODB是等边三角形.
∵F是OB的中点,
∴DG⊥AB.
∴FD=FG.(5分)
在Rt△BDF中,∠ABD=60°.
∴DF=BD·sin60°=
2
3
.
∴DG=
4
3
.(6分)
(本题6分)
(1)证明:连接OD.
∵OA=OD,∴∠A=∠1.
∵BA=BC,∴∠A=∠C.
∴∠1=∠C.
∵DE⊥BC,垂足为E,
∴∠2+∠C=90°.
∴∠1+∠2=90°.
∴∠ODE=90°.
∵点D在⊙O上,
∴DE是⊙O的切线.(3分)
(2)解:连接BD.
∵AB是⊙O的直径,
∴∠ADB=90°.
∵∠A=30°,AB=8,
∴DB=4,∠ABD=60°.(4分)
∵OD=OB,
∴△ODB是等边三角形.
∵F是OB的中点,
∴DG⊥AB.
∴FD=FG.(5分)
在Rt△BDF中,∠ABD=60°.
∴DF=BD·sin60°=
2
3
.
∴DG=
4
3
.(6分)
考点梳理
考点
分析
点评
切线的判定与性质;圆周角定理;解直角三角形.
(1)连接OD,只要证明OD⊥DE即可.
(2)连接BD,证得△ODB是等边三角形后即可得到FD=FG,然后在Rt△BDF中选择合理的边角关系求得DF,进而求得DG的长即可.
本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
找相似题
(2012·桂平市三模)如图,直线AC∥BD,⊙O与AC和BD分别相切于点A和点B.点M和点N分别是AC和BD上的动点,MN沿AC和BD平移.⊙O的半径为1,∠1=60°.下列结论错误的是( )
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
在正方形ABCD中,E为AD中点,AF丄BE交BE于G,交CD于F,连CG延长交AD于H.下列结论:
①CG=CB;②
HE
BC
=
1
4
;③
EG
GF
=
1
3
;④以AB为直径的圆与CH相切于点G,其中正确的是
①②③④
①②③④
.
如图,以△ABC的直角边AB为直径的半圆O与斜边AC交于点D,E是BC边的中点.若AD、AB的长是方程x
2
-6x+8=0的两个根,则图中阴影部分的面积为
4
3
-
4
3
π
4
3
-
4
3
π
.
(2013·雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)