试题
题目:
(2008·潜江模拟)如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.
(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;
(2)在(1)的条件不变的情况下,若GC=CD,求∠C.
答案
解:(1)结论:GD与⊙O相切.理由如下:
连接AG.
∵点G、E在圆上,
∴AG=AE.
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠B=∠1,∠2=∠3.
∵AB=AG,
∴∠B=∠3.
∴∠1=∠2.
在△AED和△AGD中,
AE=AG
∠1=∠2
AD=AD
,
∴△AED≌△AGD.
∴∠AED=∠AGD.
∵ED与⊙A相切,
∴∠AED=90°.
∴∠AGD=90°.
∴AG⊥DG.
∴GD与⊙A相切.
(2)∵GC=CD,四边形ABCD是平行四边形,
∴AB=DC,∠4=∠5,AB=AG.(5分)
∵AD∥BC,
∴∠4=∠6.
∴∠5=∠6=
1
2
∠B.
∴∠2=2∠6.
∴∠6=30°.
∴∠C=180°-∠B=180°-60°=120°.(6分)
解:(1)结论:GD与⊙O相切.理由如下:
连接AG.
∵点G、E在圆上,
∴AG=AE.
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠B=∠1,∠2=∠3.
∵AB=AG,
∴∠B=∠3.
∴∠1=∠2.
在△AED和△AGD中,
AE=AG
∠1=∠2
AD=AD
,
∴△AED≌△AGD.
∴∠AED=∠AGD.
∵ED与⊙A相切,
∴∠AED=90°.
∴∠AGD=90°.
∴AG⊥DG.
∴GD与⊙A相切.
(2)∵GC=CD,四边形ABCD是平行四边形,
∴AB=DC,∠4=∠5,AB=AG.(5分)
∵AD∥BC,
∴∠4=∠6.
∴∠5=∠6=
1
2
∠B.
∴∠2=2∠6.
∴∠6=30°.
∴∠C=180°-∠B=180°-60°=120°.(6分)
考点梳理
考点
分析
点评
专题
切线的判定与性质;平行四边形的性质.
(1)连接AG,由角的等量关系可以证出∠1=∠2,然后证明△AED≌△AGD得到∠AGD=90°,
(2)由(1)知AG⊥GD,根据角间的等量关系,解出∠6,继而求出∠C的值.
本题考查了切线的判定,全等三角形判定和平行四边形的性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
证明题.
找相似题
(2012·桂平市三模)如图,直线AC∥BD,⊙O与AC和BD分别相切于点A和点B.点M和点N分别是AC和BD上的动点,MN沿AC和BD平移.⊙O的半径为1,∠1=60°.下列结论错误的是( )
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
在正方形ABCD中,E为AD中点,AF丄BE交BE于G,交CD于F,连CG延长交AD于H.下列结论:
①CG=CB;②
HE
BC
=
1
4
;③
EG
GF
=
1
3
;④以AB为直径的圆与CH相切于点G,其中正确的是
①②③④
①②③④
.
如图,以△ABC的直角边AB为直径的半圆O与斜边AC交于点D,E是BC边的中点.若AD、AB的长是方程x
2
-6x+8=0的两个根,则图中阴影部分的面积为
4
3
-
4
3
π
4
3
-
4
3
π
.
(2013·雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)