试题
题目:
(2011·延平区质检)如图,RT△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC的中点,连接DE.
(1)求证:DE为圆的切线;
(2)若BC=5,sin∠C=
3
5
,求AD的长.
答案
(1)证明:连接OD、BD,
∵AB为圆O的直径,
∴∠BDA=90°,
∴∠BDC=180°-90°=90°,
∵E为BC的中点,
∴DE=
1
2
BC=BE,
∴∠EBD=∠EDB,
∵OD=OB,
∴∠OBD=∠ODB,
∵∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°,
∴∠ODE=90°,
∴DE是圆0的切线.
(2)解:∵sin∠C=
3
5
,
∴设AB=3x,AC=5x,
根据勾股定理得:(3x)
2
+5
2
=(5x)
2
,
解得x=
5
4
.
AC=5×
5
4
=
25
4
.
由切割线定理可知:5
2
=(
25
4
-AD)
25
4
,
解得,AD=
9
4
.
(1)证明:连接OD、BD,
∵AB为圆O的直径,
∴∠BDA=90°,
∴∠BDC=180°-90°=90°,
∵E为BC的中点,
∴DE=
1
2
BC=BE,
∴∠EBD=∠EDB,
∵OD=OB,
∴∠OBD=∠ODB,
∵∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°,
∴∠ODE=90°,
∴DE是圆0的切线.
(2)解:∵sin∠C=
3
5
,
∴设AB=3x,AC=5x,
根据勾股定理得:(3x)
2
+5
2
=(5x)
2
,
解得x=
5
4
.
AC=5×
5
4
=
25
4
.
由切割线定理可知:5
2
=(
25
4
-AD)
25
4
,
解得,AD=
9
4
.
考点梳理
考点
分析
点评
切线的判定与性质;圆周角定理;解直角三角形.
(1)连接OD、BD,根据圆周角定理求出∠BDA=∠BDC=90°,根据直角三角形的性质和等腰三角形的性质求出∠ECD=∠EDC,∠EBD=∠EDB即可.
(2)根据BC=5,sin∠C=
3
5
,求出AC的长,再根据切割线定理求出AD的长即可.
本题主要考查对勾股定理,等腰三角形的性质,直角三角形斜边上的中线的性质,切线的判定,圆周角定理,锐角三角函数等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.
找相似题
(2012·桂平市三模)如图,直线AC∥BD,⊙O与AC和BD分别相切于点A和点B.点M和点N分别是AC和BD上的动点,MN沿AC和BD平移.⊙O的半径为1,∠1=60°.下列结论错误的是( )
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
在正方形ABCD中,E为AD中点,AF丄BE交BE于G,交CD于F,连CG延长交AD于H.下列结论:
①CG=CB;②
HE
BC
=
1
4
;③
EG
GF
=
1
3
;④以AB为直径的圆与CH相切于点G,其中正确的是
①②③④
①②③④
.
如图,以△ABC的直角边AB为直径的半圆O与斜边AC交于点D,E是BC边的中点.若AD、AB的长是方程x
2
-6x+8=0的两个根,则图中阴影部分的面积为
4
3
-
4
3
π
4
3
-
4
3
π
.
(2013·雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)