全等三角形的判定与性质;等腰直角三角形.
(1)根据AC=BC,E为AB中点,得出CE⊥AB,∠ACE=∠BCE=
ACB=45°,∠AEC=90°,∠A=∠ACE=45°,AE=CE,再根据DF=EF,∠DFE=90°,得出∠FED=45°,∠FED=
∠AEC,即可得出AM=MC;
(2)先在AM截取AH,使得AH=CN,连接BH,根据AE=CE,∠A=∠BCE=45°证出△AHE≌△CNE,HE=NE,∠AEH=∠CEN,∠HEM=∠AEC-∠AEH-MEC=∠AEC-∠CEN-MEC=∠AEC-∠MEF=90°-45°=45°,∠HEM=∠NEM=45°然后证出△HEM≌△NEM,HM=MN,最后根据AM=AH+HM=CN+MN即可得出答案;
(3)先在CB上截取CH=AM,根据SAS证得△AEM≌△CEH,得出EM=EH,∠AEM=∠CEH,AM=CH,再根据∠MEN和∠AEC的度数,得出∠CEH+∠CEN=∠HEN=45°,再在△EMN和△EHN中,根据SAS证得△EMN≌△EHN,得出MN=HN,即可求出答案.
此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、等腰直角三角形的性质,关键是做出辅助线,构造全等三角形.