试题

题目:
抛物线y=ax2+bx+c经过点(-1,0),(3,0)(0,-3),求它的开口方向、对称轴和顶点坐标,并画出草图.
答案
青果学院解:解法一:把(-1,0),(3,0),(0,-3),代入y=ax2+bx+c,得:
a-b+c=0
9a+3b+c=0
c=-3

解得:
a=1
b=-2
c=-3

则函数解析式为y=x2-2x-3,即y=(x-1)2-4,
∴开口向上,对称轴为x=1,顶点坐标为(1,-4);

解法二:设函数的解析式为y=a(x+1)(x-3),
把(0,-3)代入得函数的解析式为y=(x+1)(x-3),
即y=x2-2x-3,写成顶点式y=(x-1)2-4,
∴开口向上,对称轴为x=1,顶点坐标为(1,-4).
草图为:
青果学院解:解法一:把(-1,0),(3,0),(0,-3),代入y=ax2+bx+c,得:
a-b+c=0
9a+3b+c=0
c=-3

解得:
a=1
b=-2
c=-3

则函数解析式为y=x2-2x-3,即y=(x-1)2-4,
∴开口向上,对称轴为x=1,顶点坐标为(1,-4);

解法二:设函数的解析式为y=a(x+1)(x-3),
把(0,-3)代入得函数的解析式为y=(x+1)(x-3),
即y=x2-2x-3,写成顶点式y=(x-1)2-4,
∴开口向上,对称轴为x=1,顶点坐标为(1,-4).
草图为:
考点梳理
待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.
方法1:用待定系数法求a、b,c的值,得到二次函数的解析式:y=x2-2x-3,利用顶点公式求出顶点坐标(1,-4);
方法2:或者利用交点式y=a(x-x1)(x-x2),求出解析式y=(x+1)(x-3),然后求出顶点坐标(1,-4).
本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识.
找相似题