试题

题目:
青果学院如图,在2×3矩形方格纸上,各个小正方形的顶点称为格点,则以格点为顶点的等腰直角三角形的个数为
50
50

答案
50

解:如图,AC=BC=1,AB=
2
AC,青果学院CD=
AC2+AD2
=
5

当等腰直角三角形的直角边长为1时(如等腰直角三角形ACB),这样的三角形的个数为6×4=24个;
当等腰直角三角形的直角边长为
2
时(如等腰直角三角形ABE),这样的三角形的个数为7×2=14个;
当等腰直角三角形的直角边长为2时(如等腰直角三角形DHE),这样的三角形的个数为2×4=8个;
当等腰直角三角形的直角边长为
5
时(如等腰直角三角形ACB),这样的三角形的个数为4个,
所以满足条件的等腰直角三角形的个数为24+14+8+4=50.
故答案为50.
考点梳理
等腰直角三角形.
如图,先得到AC=BC=1,AB=
2
ACCD=
AC2+AD2
=
5
,然后进行分类讨论:如等腰直角三角形ACB的边长为1,每个小方格可得到4个这样的三角形,则这样的三角形的个数为6×4=24个;如等腰直角三角形ABE的边长为
2
,每两个相邻的小方格可得到4个这样的三角形,则这样的三角形的个数为7×2=14个;如等腰直角三角形DHE的边长为2,每四个小方格组成的大正方形可得到4个这样的三角形,则这样的三角形的个数为2×4=8个;如等腰直角三角形ACB的边长为
5
,矩形方格纸上上下两边各有两个满足条件的三角形的直角顶点,则这样的三角形的个数为4个,然后把它们相加即可.
本题考查了等腰直角三角形的性质:等腰直角三角形的两底角都为45°,斜边上的高平分斜边,并且等于斜边的一半;斜边为直角边的
2
倍.
压轴题;网格型.
找相似题