试题

题目:
青果学院已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.
答案
证明:∵∠ACB=90°,
∴∠ACD=∠ACB=90°,
在△BEC和△ADC中
BC=AC
∠BCE=∠ACD
CE=CD

∴△BEC≌△ADC(SAS),
∴∠CBE=∠DAC,
∵∠ACB=90°,
∴∠CBE+∠CEB=90°,
∵∠CEB=∠AEF,
∴∠DAC+∠AEF=90°,
∴∠AFE=180°-90°=90°,
∴BF⊥AD.
证明:∵∠ACB=90°,
∴∠ACD=∠ACB=90°,
在△BEC和△ADC中
BC=AC
∠BCE=∠ACD
CE=CD

∴△BEC≌△ADC(SAS),
∴∠CBE=∠DAC,
∵∠ACB=90°,
∴∠CBE+∠CEB=90°,
∵∠CEB=∠AEF,
∴∠DAC+∠AEF=90°,
∴∠AFE=180°-90°=90°,
∴BF⊥AD.
考点梳理
全等三角形的判定与性质;等腰直角三角形.
求出△BEC≌△ADC,推出∠CBE=∠DAC,根据∠CBE+∠CEB=90°推出∠DAC+∠AEF=90°,求出∠AFE=90°,根据垂直定义求出即可.
本题考查了全等三角形的性质和判定,垂直定义,三角形的内角和定理等知识点,关键是求出∠CBE=∠DAC,主要考查学生运用定理进行推理的能力.
证明题.
找相似题