答案
解:∵抛物线y=ax
2+bx+c(a<0)交x轴于A、B两点,抛物线的对称轴是直线x=-1,AB=4,
∴A点坐标为(-3,0),B点坐标为(1,0),
设C点坐标为(0,t),t>0,
∴
×4×t=6,解得t=3,
∴C点坐标为(0,3),
设抛物线的解析式为y=a(x+3)(x-1),
把(0,3)代入得a×3×(-1)=3,解得a=-1,
∴抛物线的解析式为y=-(x+3)(x-1)=-x
2-2x+3.
解:∵抛物线y=ax
2+bx+c(a<0)交x轴于A、B两点,抛物线的对称轴是直线x=-1,AB=4,
∴A点坐标为(-3,0),B点坐标为(1,0),
设C点坐标为(0,t),t>0,
∴
×4×t=6,解得t=3,
∴C点坐标为(0,3),
设抛物线的解析式为y=a(x+3)(x-1),
把(0,3)代入得a×3×(-1)=3,解得a=-1,
∴抛物线的解析式为y=-(x+3)(x-1)=-x
2-2x+3.