试题
题目:
如图,直角坐标系中一条抛物线经过网格点A、B、C,其中B点坐标为(4,4),则该抛物线的关系式
y=-
1
6
x
2
+
2
3
x+4
y=-
1
6
x
2
+
2
3
x+4
.
答案
y=-
1
6
x
2
+
2
3
x+4
解:根据题意,设二次函数的表达式为y=ax
2
+bx+c
抛物线过(0,4),(4,4),(6,2)
所以
c=4
16a+4b+c=4
36a+6b+c=2
解得a=-
1
6
,b=
2
3
,c=4
这个二次函数的表达式为y=-
1
6
x
2
+
2
3
x+4.
考点梳理
考点
分析
点评
专题
待定系数法求二次函数解析式.
根据题意,把抛物线经过的三点代入函数的表达式,列出方程组,解出各系数则可.
本题考查了用待定系数法求函数表达式的方法,同时还考查了方程组的解法等知识,是比较常见的题目.
网格型.
找相似题
(2011·泰安)若二次函数y=ax
2
+bx+c的x与y的部分对应值如下表:
x
-7
-6
-5
-4
-3
-2
y
-27
-13
-3
3
5
3
则当x=1时,y的值为( )
二次函数y=2x
2
+bx+c的图象经过点(0,-6)、(3,0),求这个二次函数的解析式,并用配方法求它的图象的顶点坐标.
已知抛物线y=x
2
+bx+c经过点(1,-4)和(-1,2).求抛物线解析式.
已知抛物线经过A(-1,0),B(0,-2),C(1,-2),且与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.
在平面直角坐标系xOy中,二次函数y=mx
2
+nx-2的图象过A(-1,-2)、B(1,0)两点.
(1)求此二次函数的解析式;
(2)点P(t,0)是x轴上的一个动点,过点P作x轴的垂线交直线AB于点M,交二次函数的图象于点N.当点M位于点N的上方时,直接写出t的取值范围.