试题
题目:
若所求的二次函数图象与抛物线y=2x
2
-4x-1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的解析式为( )
A.y=-x
2
+2x+4
B.y=-ax
2
-2ax-3(a>0)
C.y=-2x
2
-4x-5
D.y=ax
2
-2ax+a-3(a<0)
答案
D
解:抛物线y=2x
2
-4x-1的顶点坐标为(1,-3),根据题意得所求的二次函数的解析式的顶点坐标是(1,-3),且抛物线开口向下.
A、抛物线开口向下,顶点坐标是(1,5),故选项错误;
B、抛物线开口向下,顶点坐标是(1,-3a-3),故选项错误;
C、抛物线开口向下,顶点坐标是(-1,-3),故选项错误;
D、抛物线开口向下,顶点坐标是(1,-3),故选项正确.
故选D.
考点梳理
考点
分析
点评
待定系数法求二次函数解析式.
先由顶点公式(-
b
2a
,
4ac-
b
2
4a
)求出抛物线y=2x
2
-4x-1的顶点坐标为(1,-3),根据题意得所求的二次函数的解析式的顶点坐标是(1,-3),且抛物线开口向下.再分别确定选项中的顶点坐标和开口方向即可求解.
主要考查了二次函数的顶点和开口方向的确定方法.二次函数y=ax
2
+bx+c(a≠0)的顶点公式为(-
b
2a
,
4ac-
b
2
4a
).
找相似题
(2011·泰安)若二次函数y=ax
2
+bx+c的x与y的部分对应值如下表:
x
-7
-6
-5
-4
-3
-2
y
-27
-13
-3
3
5
3
则当x=1时,y的值为( )
二次函数y=2x
2
+bx+c的图象经过点(0,-6)、(3,0),求这个二次函数的解析式,并用配方法求它的图象的顶点坐标.
已知抛物线y=x
2
+bx+c经过点(1,-4)和(-1,2).求抛物线解析式.
已知抛物线经过A(-1,0),B(0,-2),C(1,-2),且与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.
在平面直角坐标系xOy中,二次函数y=mx
2
+nx-2的图象过A(-1,-2)、B(1,0)两点.
(1)求此二次函数的解析式;
(2)点P(t,0)是x轴上的一个动点,过点P作x轴的垂线交直线AB于点M,交二次函数的图象于点N.当点M位于点N的上方时,直接写出t的取值范围.