试题

题目:
青果学院将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2
3
,E是AC上的一点(AE>CE),且DE=BE,则AE的长为
5
2
5
2

答案
5
2

青果学院解:∵AB=2
3
,∠BAC=30°,
∴BC=
1
2
AB=
1
2
×2
3
=
3

根据勾股定理,AC=
AB2-BC2
=
(2
3
)
2
-
3
2
=3,
过点D作DF⊥AC于F,
∵△ACD是等腰直角三角形,
∴DF=CF=
1
2
AC=
3
2

设CE=x,则EF=
3
2
-x,
在Rt△DEF中,DE2=DF2+EF2=(
3
2
2+(
3
2
-x)2
在Rt△BCE中,BE2=BC2+CE2=
3
2+x2
∵DE=BE,
∴(
3
2
2+(
3
2
-x)2=
3
2+x2
解得x=
1
2

所以,AE=AC-CE=3-
1
2
=
5
2

故答案为:
5
2
考点梳理
勾股定理;含30度角的直角三角形;等腰直角三角形.
根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,过点D作DF⊥AC于F,根据等腰直角三角形的性质求出DF=CF=
1
2
AC,设CE=x,表示出EF,然后分别用勾股定理表示出DE2、BE2,再列出方程求解即可.
本题考查了勾股定理的应用,直角三角形30°角所对的直角边等于斜边的一半的性质,等腰直角三角形的性质,作辅助线,利用勾股定理表示出DE、BE然后列出方程是解题的关键.
压轴题.
找相似题