试题

题目:
三角形外心我们可以理解为:到三角形三个顶点距离相等的点称三角形的外心,由此,我们定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
举例:如图1,若PA=PB,则点P为△ABC的准外心.
(1)应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=
1
2
AB,求∠APB的度数.
(2)探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.
青果学院
答案
解:(1)①若PB=PC,连接PB,则∠PCB=∠PBC,
∵CD为等边三角形的高,
∴AD=BD,∠PCB=30°,
∴∠PBD=∠PBC=30°,
∴PD=
3
3
DB=
3
6
AB,
与已知PD=
1
2
AB矛盾,
∴PB≠PC,
②若PA=PC,连接PA,同理可得PA≠PC,
③若PA=PB,由PD=
1
2
AB,得PD=BD,青果学院
∴∠APD=45°,
故∠APB=90°;

(2)解:∵BC=5,AB=3,
∴AC=
BC2-AB2
=4,
①若PB=PC,设PA=x,则x2+32=(4-x)2
∴x=
7
8
,即PA=
7
8

②若PA=PC,则PA=2,
③若PA=PB,由图知,在Rt△PAB中,不可能.
故PA=2或
7
8

解:(1)①若PB=PC,连接PB,则∠PCB=∠PBC,
∵CD为等边三角形的高,
∴AD=BD,∠PCB=30°,
∴∠PBD=∠PBC=30°,
∴PD=
3
3
DB=
3
6
AB,
与已知PD=
1
2
AB矛盾,
∴PB≠PC,
②若PA=PC,连接PA,同理可得PA≠PC,
③若PA=PB,由PD=
1
2
AB,得PD=BD,青果学院
∴∠APD=45°,
故∠APB=90°;

(2)解:∵BC=5,AB=3,
∴AC=
BC2-AB2
=4,
①若PB=PC,设PA=x,则x2+32=(4-x)2
∴x=
7
8
,即PA=
7
8

②若PA=PC,则PA=2,
③若PA=PB,由图知,在Rt△PAB中,不可能.
故PA=2或
7
8
考点梳理
线段垂直平分线的性质;等边三角形的性质;等腰直角三角形.
(1)连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;
(2)先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况,根据三角形的性质计算即可得解.
本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.
新定义.
找相似题