试题

题目:
青果学院如图,平面直角坐标系中,已知点A(a-1,a+b),B(a,0),且
a+b-3
+(a-2b)2=0
,C为x轴上点B右侧的动点,以AC为腰作等腰△ACD,使AD=AC,∠CAD=∠OAB,直线DB交y轴于点P.
(1)求证:AO=AB;
(2)求证:△AOC≌△ABD;
(3)当点C运动时,点P在y轴上的位置是否发生改变,为什么?
答案
青果学院(1)证明:∵
a+b-3
+(a-2b)2=0,
a+b-3=0
a-2b=0
,解得
a=2
b=1

∴A(1,3),B(2,0),
作AE⊥OB于点E,
∵A(1,3),B(2,0),
∴OE=1,BE=2-1=1,
在△AEO与△AEB中,
AE=AE
∠AEO=∠AEB=90°
OE=BE

∴△AEO≌△AEB,
∴AO=AB;

(2)证明:∵∠CAD=∠OAB,
∴∠CAD+∠BAC=∠OAB+∠BAC,即∠OAC=∠BAD,
在△AOC与△ABD中,
OA=AB
∠OAC=∠BAD
AC=AD

∴△AOC≌△ABD(SAS);

(3)解:点P在y轴上的位置不发生改变.
理由:设∠AOB=∠ABO=α,
∵由(2)知,△AOC≌△ABD,
∴∠ABD=∠AOB=α,
∵OB=2,∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,∠POB=90°,
∴OP长度不变,
∴点P在y轴上的位置不发生改变.
青果学院(1)证明:∵
a+b-3
+(a-2b)2=0,
a+b-3=0
a-2b=0
,解得
a=2
b=1

∴A(1,3),B(2,0),
作AE⊥OB于点E,
∵A(1,3),B(2,0),
∴OE=1,BE=2-1=1,
在△AEO与△AEB中,
AE=AE
∠AEO=∠AEB=90°
OE=BE

∴△AEO≌△AEB,
∴AO=AB;

(2)证明:∵∠CAD=∠OAB,
∴∠CAD+∠BAC=∠OAB+∠BAC,即∠OAC=∠BAD,
在△AOC与△ABD中,
OA=AB
∠OAC=∠BAD
AC=AD

∴△AOC≌△ABD(SAS);

(3)解:点P在y轴上的位置不发生改变.
理由:设∠AOB=∠ABO=α,
∵由(2)知,△AOC≌△ABD,
∴∠ABD=∠AOB=α,
∵OB=2,∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,∠POB=90°,
∴OP长度不变,
∴点P在y轴上的位置不发生改变.
考点梳理
全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.
(1)先根据非负数的性质求出a、b的值,作AE⊥OB于点E,由SAS定理得出△AEO≌△AEB,根据全等三角形的性质即可得出结论;
(2)先根据∠CAD=∠OAB,得出∠OAC=∠BAD,再由SAS定理即可得出△AEO≌△AEB;
(3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP的长度不变,故可得出结论.
本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键.
找相似题