试题
题目:
在Rt△ABC中,∠BAC=90°,AB=AC=1,以AC为腰作等腰直角三角形ACD,则线段BD的长为
2或
10
2
或
5
2或
10
2
或
5
.
答案
2或
10
2
或
5
解:①以A为直角顶点,向外作等腰直角三角形DAC,
∵∠DAC=90°,且AD=AC,
∴BD=BA+AD=1+1=2;
②以C为直角顶点,向外作等腰直角三角形ACD,
连接BD,过点D作DE⊥BC,交BC的延长线于E.
∵△ABC是等腰直角三角形,∠ACD=90°,
∴∠DCE=45°,
又∵DE⊥CE,
∴∠DEC=90°,
∴∠CDE=45°,
∴CE=DE=1×
2
2
=
2
2
;
在Rt△BAC中,BC=
2
,
∴BD=
5
,
③以AC为斜边,向外作等腰直角三角形ADC,
∵∠ADC=90°,AD=DC,且AC=2,
∴AD=DC=ACsin45°=1×
2
2
,
又∵△ABC、△ADC是等腰直角三角形,
∴∠ACB=∠ACD=45°,
∴∠BCD=90°,
又∵在Rt△ABC中,BC=
2
,
∴BD=
10
2
,
综上所述:BD的长等于2或
10
2
或
5
.
考点梳理
考点
分析
点评
专题
勾股定理;等腰直角三角形.
分情况讨论,①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.
本题考查了等腰直角三角形的性质、勾股定理等知识,解题时注意分类讨论,不要漏掉所有可能的情况.
分类讨论.
找相似题
(2013·宿迁)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )
(2010·雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是( )
(2010·攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是( )