试题
题目:
(2011·杭州)在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,则点F到直线BC的距离为
3
±1
2
3
±1
2
.
答案
3
±1
2
解:(1)如图,延长AC,作FD⊥BC交点为D,FE垂直AC延长线于点E,
∵CF∥AB,∴∠FCD=∠CBA=45°,
∴四边形CDFE是正方形,
即,CD=DF=FE=EC,
∵在等腰直角△ABC中,AC=BC=1,AB=AF,
∴AB=
1
2
+
1
2
=
2
,
∴AF=
2
;
∴在直角△AEF中,(1+EC)
2
+EF
2
=AF
2
∴
(1+DF)
2
+
DF
2
=
(
2
)
2
,
解得,DF=
3
-1
2
;
(2)如图,延长BC,做FD⊥BC,交点为D,延长CA,做FE⊥CA于点E,
同理可证,四边形CDFE是正方形,
即,CD=DF=FE=EC,
同理可得,在直角△AEF中,(EC-1)
2
+EF
2
=AF
2
,
∴
(FD-1)
2
+
FD
2
=
(
2
)
2
,
解得,FD=
3
+1
2
;
故答案为:
3
±1
2
.
考点梳理
考点
分析
点评
专题
勾股定理;等腰直角三角形.
如图,延长AC,做FD⊥BC交点为D,FE⊥AC,交点为E,可得四边形CDFE是正方形,则,CD=DF=FE=EC;等腰Rt△ABC中,
∠C=90°,AC=1,所以,可求出AC=1,AB=
2
,又AB=AF;所以,在直角△AEF中,可运用勾股定理求得DF的长即为点F到BC的距离.
本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答;考查了学生的空间想象能力.
作图题;压轴题;转化思想.
找相似题
(2013·宿迁)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )
(2010·雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是( )
(2010·攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是( )