试题

题目:
青果学院如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作等腰Rt△BCD,如果AB=1,AD=
2
,则AC的长为(  )



答案
C
青果学院解:在AC上取一点E,使CE=AB,连接DE.
∵∠BAC=∠BDC=90°,
∴∠AFB+∠ABF=90°,∠DFC+∠DCF=90°.
∵∠AFB=∠DFC,
∴∠ABF=∠DCE.
∵△ABC是等腰Rt△,
∴BD=CD.
在△ABD和△ECD中,
BD=CD
∠ABF=∠DCE
AB=EC

∴△ABD≌△ECD(SAS),
∴AD=ED,∠ADB=∠EDC,
∵∠BDE+∠EDC=90°,
∴∠BDE+∠ADB=90°,
∴△ADE是等腰直角三角形,
∵AD=
2

∴AE=2.
∵CE=AB=1,
∴AC=2+1=3.
故选C.
考点梳理
全等三角形的判定与性质;等腰直角三角形.
在AC上取一点E,使CE=AB,连接DE,证明△ABD≌△ECD就可以得出△ADE是等腰直角三角形就可以得出结论.
本题考查了等腰直角三角形的判定及性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,解答时运用截取法作辅助线是难点.
找相似题