试题
题目:
如图,用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到图中所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角为( )
A.22°
B.22.5°
C.23°
D.30°
答案
A
解:根据题意,得
∠AOB=45°,M处三角板的45°角是∠AOB的对应角,
根据三角形的外角的性质,可得
三角板的斜边与射线OA的夹角为22°.
故选A.
考点梳理
考点
分析
点评
等腰直角三角形;平移的性质.
根据的平移性质,对应线段平行,再根据旋转角为22°进行计算.
平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键是利用了对应线段平行且对应角相等的性质.
找相似题
(2013·宿迁)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )
(2010·雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是( )
(2010·攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是( )