试题
题目:
(2012·海陵区二模)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l
1
,l
2
,l
3
上,且l
1
,l
2
之间的距离为1,l
2
,l
3
之间的距离为2,则AC的长是( )
A.
13
B.
20
C.
26
D.5
答案
C
解:
过A作AE⊥l
3
于E,过C作CF⊥l
3
于F,
则∠AEF=∠CFB=∠ABC=90°,
∴∠ABE+∠CBF=180°-90°=90°,
∠EAB+∠ABE=90°,
∴∠EAB=∠CBF,
∵在△AEB和△BFC中
∠EAB=∠CBF
∠AEB=∠CFB
AB=BC
,
∴△AEB≌△BFC(AAS),
∴AE=BF=2,BE=CF=2+1=3,
由勾股定理得:AB=BC=
2
2
+3
2
=
13
,
由勾股定理得:AC=
(
13
)
2
+(
13
)
2
=
26
,
故选C.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;平行线之间的距离;等腰直角三角形.
过A作AE⊥l
3
于E,过C作CF⊥l
3
于F,求出∠AEB=∠CFB,∠EAB=∠CBF,根据AAS证△AEB≌△BFC,推出AE=BF=2,BE=CF=3,由勾股定理求出AB和BC,再由勾股定理求出AC即可.
本题考查的知识点有两平行线间的距离,全等三角形的性质和判定,勾股定理,解此题的关键是构造全等三角形求出AB和BC的长.
压轴题.
找相似题
(2013·宿迁)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )
(2010·雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是( )
(2010·攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是( )