试题
题目:
(2013·莒南县一模)在等腰直角三角形ABC中,∠C=90°,AC=8,点F是AB的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,则四边形CDFE的面积是( )
A.32
B.16
C.8
2
D.无法确定
答案
B
解:连接CF,
∵△ABC是等腰直角三角形,点F是AB中点,
∴∠ACF=∠BCF=∠A=∠B=45°,CF=AF=BF,
∵在△FCE和△FAD中,
CE=AD
∠FCE=∠FAD
CF=AF
,
∴△FCE≌△FAD(SAS).
∴S
四边形CDFE
=S
△AFC
=
1
2
S
△ABC
=16.
故选B.
考点梳理
考点
分析
点评
等腰直角三角形;全等三角形的判定与性质.
连结CF,SAS证明△FCE≌△FAD,从而将四边形CDFE的面积转化为△AFC的面积.
本题考查了全等三角形的判定与性质及等腰直角三角形的知识,用到的知识点为:直角三角形中,斜边中线等于斜边一半.
找相似题
(2013·宿迁)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )
(2010·雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是( )
(2010·攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是( )