试题
题目:
如图,某公园有一块菱形草地ABCD,它的边及对角线AC是小路,若AC的长为16m,边AB的长为10m,妈妈站在AC的中点O处,亮亮沿着小路C→D→A→B→C跑步,在跑步过程中,亮亮与妈妈之间的最短距离为
4.8
4.8
m.
答案
4.8
解:如图,连接BD,
∵在菱形ABCD中,AC=16cm,
∴OC=
1
2
AC=
1
2
×16=8cm,且AC⊥BD,
∴OB=
AB
2
-OA
2
=
10
2
-8
2
=6cm,
设点O到AB边的距离为h,
则S
△AOB
=
1
2
×6×8=
1
2
×10h,
解得h=4.8,
所以,亮亮与妈妈之间的最短距离为4.8m.
故答案为:4.8.
考点梳理
考点
分析
点评
菱形的性质.
连接BD,根据菱形的对角线互相垂直平分求出OA,然后根据勾股定理列式求出OB,再根据三角形的面积求出点O到AB边距离,即可得解.
本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,三角形的面积,熟记性质是解题的关键.
找相似题
(2013·宜宾)矩形具有而菱形不具有的性质是( )
(2013·怀化)如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=( )
(2012·宜昌)如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
(2012·孝感)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S
△ABD
=
3
4
AB
2
其中正确的结论有( )
(2012·泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为( )