试题
题目:
(2012·宜昌)如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
A.20
B.15
C.10
D.5
答案
B
解:∵∠BCD=120°,
∴∠B=60°,
又∵ABCD是菱形,
∴BA=BC,
∴△ABC是等边三角形,
故可得△ABC的周长=3AB=15.
故选B.
考点梳理
考点
分析
点评
专题
菱形的性质;等边三角形的判定与性质.
根据题意可得出∠B=60°,结合菱形的性质可得BA=BC,判断出△ABC是等边三角形即可得出△ABC的周长.
此题考查了菱形的性质及等边三角形的判定与性质,根据菱形的性质判断出△ABC是等边三角形是解答本题的关键,难度一般.
数形结合.
找相似题
(2013·宜宾)矩形具有而菱形不具有的性质是( )
(2013·怀化)如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=( )
(2012·孝感)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S
△ABD
=
3
4
AB
2
其中正确的结论有( )
(2012·泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为( )
(2012·陕西)如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为( )