试题
题目:
(2008·枣庄)如图,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为( )
A.(0,0)
B.(
1
2
,-
1
2
)
C.(
2
2
,-
2
2
)
D.(-
1
2
,
1
2
)
答案
B
解:过A点作垂直于直线y=-x的垂线AB,
∵点B在直线y=-x上运动,
∴∠AOB=45°,
∴△AOB为等腰直角三角形,
过B作BC垂直x轴垂足为C,
则点C为OA的中点,
则OC=BC=
1
2
.
作图可知B在x轴下方,y轴的右方.
∴横坐标为正,纵坐标为负.
所以当线段AB最短时,点B的坐标为(
1
2
,-
1
2
).
故选B.
考点梳理
考点
分析
点评
专题
坐标与图形性质;垂线段最短;等腰直角三角形.
线段AB最短,说明AB此时为点A到y=-x的距离.过A点作垂直于直线y=-x的垂线AB,由题意可知:△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,有OC=BC=
1
2
,故可确定出点B的坐标.
动手操作很关键.本题用到的知识点为:垂线段最短.
计算题;压轴题.
找相似题
(2013·宿迁)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )
(2010·雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是( )
(2010·攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是( )