试题
题目:
(2010·常德)如图,已知四边形ABCD是菱形,DE⊥AB,DF⊥BC,求证:△ADE≌△CDF.
答案
证明:在△ADE和△CDF中,
∵四边形ABCD是菱形,
∴∠A=∠C,AD=CD,(2分)
又DE⊥AB,DF⊥BC,
∴∠AED=∠CFD=90°,(4分)
∴△ADE≌△CDF.(6分)
证明:在△ADE和△CDF中,
∵四边形ABCD是菱形,
∴∠A=∠C,AD=CD,(2分)
又DE⊥AB,DF⊥BC,
∴∠AED=∠CFD=90°,(4分)
∴△ADE≌△CDF.(6分)
考点梳理
考点
分析
点评
专题
全等三角形的判定;菱形的性质.
先利用菱形的性质可求出一组对应角相等,一组对应边相等,再结合已知条件中的垂直条件,又可得一组对应角相等,从而利用AAS可证两个三角形全等.
本题利用了菱形的性质、全等三角形的判定.
证明题.
找相似题
(2013·宜宾)矩形具有而菱形不具有的性质是( )
(2013·怀化)如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=( )
(2012·宜昌)如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
(2012·孝感)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S
△ABD
=
3
4
AB
2
其中正确的结论有( )
(2012·泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为( )