试题
题目:
(2007·南长区二模)已知,如图,菱形ABCD中,E、F分别是CD、CB上的点,且CE=CF;
(1)求证:△ABE≌△ADF.
(2)若菱形ABCD中,AB=4,∠C=120°,∠EAF=60°,求菱形ABCD的面积.
答案
证明:(1)∵四边形ABCD是菱形,
∴AB=AD,BC=CD,∠B=∠D,
∵CE=CF,
∴BE=DF,
在△ABE与△ADF中,
∵
AB=AD
∠B=∠D
BC=CD
,
∴△ABE≌△ADF(SAS)
(2)连接AC,
∵∠C=120°,
∴可得△ABC和△ACD为两个全等的等边三角形,
又∵AB=4,
S
△ABC
=S
△A,DC
=4
3
,
∴S
菱形ABCD
=
8
3
.
证明:(1)∵四边形ABCD是菱形,
∴AB=AD,BC=CD,∠B=∠D,
∵CE=CF,
∴BE=DF,
在△ABE与△ADF中,
∵
AB=AD
∠B=∠D
BC=CD
,
∴△ABE≌△ADF(SAS)
(2)连接AC,
∵∠C=120°,
∴可得△ABC和△ACD为两个全等的等边三角形,
又∵AB=4,
S
△ABC
=S
△A,DC
=4
3
,
∴S
菱形ABCD
=
8
3
.
考点梳理
考点
分析
点评
专题
菱形的性质;全等三角形的判定与性质.
(1)根据SAS即可判断出△ABE≌△ADF.
(2)连接AC,则可将菱形分成两个全等的等边三角形,从而根据AB=4可求出面积.
本题考查了菱形的性质及全等三角形的判定,难度一般,解答本题的关键是根据题意条件得出证明结论需要的条件.
常规题型.
找相似题
(2013·宜宾)矩形具有而菱形不具有的性质是( )
(2013·怀化)如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=( )
(2012·宜昌)如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
(2012·孝感)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S
△ABD
=
3
4
AB
2
其中正确的结论有( )
(2012·泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为( )