试题
题目:
根据二次函数y=ax
2
+bx+c的图象,在下列条件下,分别求出a、b、c的取值范围:
(1)关于y轴对称;
(2)函数图象的顶点在x轴上;
(3)顶点在原点;
(4)与x轴有两个交点,并且分别在原点两侧.
答案
解:(1)∵关于y轴对称,
∴对称轴为x=0,
∴b=0,a≠0、c≠0为任意实数;
(2)∵函数的顶点在x轴上
∴a≠0,△=b
2
-4ac=0;
(3)∵顶点在原点,
∵a≠0,b=c=0;
(4)∵与x轴有两个交点,并且分别在原点两侧
∴两个根,一正一负,
∴两根积=
c
a
<0,即a,c异号
∴b
2
-4ac>0,即有两个不同实数.
∴条件即为a,c异号,b
2
-4ac>0.
解:(1)∵关于y轴对称,
∴对称轴为x=0,
∴b=0,a≠0、c≠0为任意实数;
(2)∵函数的顶点在x轴上
∴a≠0,△=b
2
-4ac=0;
(3)∵顶点在原点,
∵a≠0,b=c=0;
(4)∵与x轴有两个交点,并且分别在原点两侧
∴两个根,一正一负,
∴两根积=
c
a
<0,即a,c异号
∴b
2
-4ac>0,即有两个不同实数.
∴条件即为a,c异号,b
2
-4ac>0.
考点梳理
考点
分析
点评
二次函数的性质.
(1)根据对称轴是y轴的二次函数的特点进行解答;
(2)根据顶点在x轴上的二次函数的特点进行解答;
(3)根据顶点在原点上的二次函数的特点进行解答;
(4)根据抛物线与x轴有两个交点可知△>0,再根据并且分别在原点两侧可知有两个根,一正一负,由此可得出结论.
本题考查的是二次函数的性质,熟知二次函数的图象与系数的关系、抛物线与x轴的交点问题是解答此题的关键.
找相似题
(2013·徐州)二次函数y=ax
2
+bx+c图象上部分点的坐标满足下表:
x
…
-3
-2
-1
0
1
…
y
…
-3
-2
-3
-6
-11
…
则该函数图象的顶点坐标为( )
(2013·日照)如图,已知抛物线y
1
=-x
2
+4x和直线y
2
=2x.我们约定:当x任取一值时,x对应的函数值分别为y
1
、y
2
,若y
1
≠y
2
,取y
1
、y
2
中的较小值记为M;若y
1
=y
2
,记M=y
1
=y
2
.下列判断:
①当x>2时,M=y
2
;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.
其中正确的有( )
(2013·南宁)已知二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,下列说法错误的是( )
(2013·内江)若抛物线y=x
2
-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )
(2013·兰州)二次函数y=2(x-1)
2
+3的图象的顶点坐标是( )