试题

题目:
青果学院以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AB边于点E,若△CDE的周长为12,则直角梯形ABCE周长为(  )



答案
C
解:设AE的长为x,正方形ABCD的边长为a,
∵CE与半圆O相切于点F,
∴AE=EF,BC=CF,
∵EF+FC+CD+ED=12,
∴AE+ED+CD+BC=12,
∵AD=CD=BC=AB,
∴正方形ABCD的边长为4;
在Rt△CDE中,ED2+CD2=CE2,即(4-x)2+42=(4+x)2,解得:x=1,
∵AE+EF+FC+BC+AB=14,
∴直角梯形ABCE周长为14.
故选C.
考点梳理
切线长定理.
根据切线的性质知:AE=EF,BC=CF;根据△CDE的周长可求出正方形ABCD的边长;在Rt△CDE中,利用勾股定理可将AE的长求出,进而可求出直角梯形ABCE的周长.
本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.
找相似题