试题

题目:
(2011·台湾)如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确(  )
青果学院



答案
A
解:∵∠1=60°,∠2=65°,
∴∠ABC=180°-∠1-∠2=180°-60°-65°=55°,
∴∠2>∠1>∠ABC,
∴AB>BC>AC,
∵CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点,
∴AC=CD,BC=CE,
∴AB>CE>CD.
故选A.
考点梳理
切线长定理;三角形三边关系;三角形内角和定理.
根据∠1=60°,∠2=65°,利用三角形内角和定理求出∠ABC的度数,然后可得AB>BC>AC,由切线长定理得AC=CD,BC=CE,利用等量代换求得AB>CE>CD即可.
此题主要考查切线长定理和三角形三边关系,三角形内角和定理等知识点,解答此题的关键是利用三角形内角和定理求出∠ABC的度数.
计算题.
找相似题