试题
题目:
(2012·卧龙区二模)如图,⊙O直径AB=8cm,∠CBD=30°,则弦DC=
4
4
cm.
答案
4
解:连接OC、OD,如图,
∵∠DBC=
1
2
∠DOC,∠CBD=30°,
∴∠DOC=60°,
而OC=OD,
∴△COD是等边三角形,
∴DC=OD,
又∵直径AB=8cm,
∴OD=4cm
∴CD=4cm;
故答案是:4.
考点梳理
考点
分析
点评
圆周角定理;等边三角形的判定与性质.
连接OC、OD,由∠DBC=
1
2
∠DOC,∠CBD=30°,得到∠DOC=60°,得到△COD是等边三角形,所以有DC=OD,再由直径AB=8cm,即可求出DC.
本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.也考查了等边三角形的性质.
找相似题
(2013·宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )
(2013·成都)如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为( )