试题

题目:
青果学院如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为
2
2

答案
2

青果学院解:作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.
此时PA+PB最小,且等于AC的长.
连接OA,OC,
∵∠AMN=30°,
∴∠AON=60°,
∴弧AN的度数是60°,
则弧BN的度数是30°,
根据垂径定理得弧CN的度数是30°,
则∠AOC=90°,又OA=OC=1,
则AC=
2
考点梳理
圆周角定理;轴对称-最短路线问题.
首先利用在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点P的位置,然后根据弧的度数发现一个等腰直角三角形计算.
此题主要考查了确定点P的位置,垂径定理的应用.
压轴题;动点型.
找相似题