试题
题目:
(2013·徐州模拟)如图,已知AB是⊙O的直径,BC为弦,过圆心O作OD⊥BC交弧BC于点D,连接DC,若∠DCB=32°,则∠BAC=
64°
64°
.
答案
64°
解:∵∠BOD与∠BCD为
BD
所对的圆心角和圆周角,
∴∠BOD=2∠BCD=64°,
∵AB为直径,∴AC⊥BC,
又∵OD⊥BC,∴AC∥OD,
∴∠BAC=∠BOD=64°,
故答案为:64°.
考点梳理
考点
分析
点评
圆周角定理;垂径定理.
由圆周角定理可知,∠BOD=2∠BCD=64°,由AB为直径可知,AC⊥BC,又OD⊥BC,可知AC∥OD,利用平行线的性质可求∠BAC.
本题考查了圆周角定理,平行线的判定与性质.关键是利用圆周角定理求圆心角,利用平行线的判定与性质求解.
找相似题
(2013·宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )
(2013·成都)如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为( )