试题
题目:
(2004·常州)如图,在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,则BC=
8
8
cm,∠ABD=
45
45
度.
答案
8
45
解:∵AB是⊙O的直径,
∴∠ACB=90°,
①Rt△ABC中,AB=10cm,AC=6cm,由勾股定理,得:BC=
AB
2
-
AC
2
=8cm;
②∵CD平分∠ACB,∴∠ACD=
1
2
∠ACB=45°,
∴∠ABD=∠ACD=45°.
考点梳理
考点
分析
点评
圆周角定理;勾股定理.
已知AB是⊙O的直径,由圆周角定理可知:∠ACB=90°
①Rt△ACB中,利用勾股定理可求得BC的长;
②CD平分∠ACB,则∠ACD=45°,根据同弧所对的圆周角的关系,可求出∠ABD的度数.
此题主要考查了圆周角定理及勾股定理的综合应用.
找相似题
(2013·宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )
(2013·成都)如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为( )