试题
题目:
(2003·大连)如图,在△ABC中,以BC为直径的⊙O交AB于D,交AC于E,BD=CE.
求证:AB=AC.
答案
证明:连接BE,CD,
则∠BDC=∠CEB=90°.
∵BD=CE,
∴弧BD=弧CE.
∴∠EBC=∠DCB.
∵BC=CB,
∴△BEC≌△CDB.(AAS)
∴∠ABC=∠ACB.
∴AB=AC.
证明:连接BE,CD,
则∠BDC=∠CEB=90°.
∵BD=CE,
∴弧BD=弧CE.
∴∠EBC=∠DCB.
∵BC=CB,
∴△BEC≌△CDB.(AAS)
∴∠ABC=∠ACB.
∴AB=AC.
考点梳理
考点
分析
点评
专题
垂径定理;等腰三角形的判定.
本题要证边相等,我们可通过证角相等来实现.那么可通过构建全等三角形来求解,如果连接CD,BE,根据圆周角定理我们不难得出∠BDC=∠BEC=90°,而BD=CE,则弧BD=弧CE,因此∠EBC=∠DCB,而三角形BEC和CBD又共用了一条公共边BC,因此两三角形全等,即可得出∠ABC=∠ACB,根据等角对等边就可得出所求的结论.
本题主要考查了全等三角形的判定以及圆周角定理,通过构建全等三角形来得出角相等是解题的关键.
证明题.
找相似题
(2010·江西)如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为
(6,0)
(6,0)
.
(2009·龙岩)如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为
7
2
7
2
.
(2009·济南)如图,⊙O的半径OA=5cm,若弦AB=8cm,P为AB上一动点,则点P到圆心O的最短距离为
3
3
cm.
(2009·哈尔滨)如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为
8
8
.
(2009·鄂州)在⊙O中,已知⊙O的直径AB为2,弦AC长为
3
,弦AD长为
2
.则DC
2
=
2+
3
或
2-
3
2+
3
或
2-
3
.