试题
题目:
如图,已知梯形ABCD的四个顶点都在⊙O上,AB∥CD,⊙O的半径为5,AB=6,CD=8,求S
梯形ABCD
.
答案
解:过点O作OF⊥CD于点F,反向延长OF交AB于点E,连接OC,OB,
∵AB∥CD,
∴OE⊥AB,OF⊥CD,
∴BE=
1
2
AB=
1
2
×6=3,CF=
1
2
CD=
1
2
×8=4,
∵⊙O的半径为5,
∴OE=
OB
2
-
BE
2
=
5
2
-
3
2
=4,
OF=
OC
2
-
CF
2
=
5
2
-
4
2
=3,
∴S
梯形ABCD
=
1
2
(AB+CD)·(OE+OF)=
1
2
×(6+8)×(4+3)=49.
解:过点O作OF⊥CD于点F,反向延长OF交AB于点E,连接OC,OB,
∵AB∥CD,
∴OE⊥AB,OF⊥CD,
∴BE=
1
2
AB=
1
2
×6=3,CF=
1
2
CD=
1
2
×8=4,
∵⊙O的半径为5,
∴OE=
OB
2
-
BE
2
=
5
2
-
3
2
=4,
OF=
OC
2
-
CF
2
=
5
2
-
4
2
=3,
∴S
梯形ABCD
=
1
2
(AB+CD)·(OE+OF)=
1
2
×(6+8)×(4+3)=49.
考点梳理
考点
分析
点评
垂径定理;勾股定理.
过点O作OF⊥CD于点F,反向延长OF交AB于点E,连接OC,OB,先根据垂径定理求出BE及CF的长,再由勾股定理求出OF及OE的长,由梯形的面积公式即可得出结论.
本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
找相似题
(2010·江西)如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为
(6,0)
(6,0)
.
(2009·龙岩)如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为
7
2
7
2
.
(2009·济南)如图,⊙O的半径OA=5cm,若弦AB=8cm,P为AB上一动点,则点P到圆心O的最短距离为
3
3
cm.
(2009·哈尔滨)如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为
8
8
.
(2009·鄂州)在⊙O中,已知⊙O的直径AB为2,弦AC长为
3
,弦AD长为
2
.则DC
2
=
2+
3
或
2-
3
2+
3
或
2-
3
.