试题
题目:
如图,已知点M是以AB为直径的半圆上的一个三等分点,点N是弧BM的中点,点P是直径AB上的点.若⊙O的半径为1.
(1)用尺规在图中作出点P,使MP+NP的值最小(保留作图痕迹,不写作法);
(2)求MP+NP的最小值.
答案
解:(1)如图1所示;
(2)如图2,
连接OM′,ON,
∵点M是以AB为直径的半圆上的一个三等分点,点N是弧BM的中点,
∴∠BON=360°×
1
12
=30°,
∠M′OB=360°×
1
6
=60°,
∴∠M′ON=90°,
∴△OM′N是等腰直角三角形,
∴M′N=
ON
2
+OM
′
2
=
1
2
+
1
2
=
2
.
解:(1)如图1所示;
(2)如图2,
连接OM′,ON,
∵点M是以AB为直径的半圆上的一个三等分点,点N是弧BM的中点,
∴∠BON=360°×
1
12
=30°,
∠M′OB=360°×
1
6
=60°,
∴∠M′ON=90°,
∴△OM′N是等腰直角三角形,
∴M′N=
ON
2
+OM
′
2
=
1
2
+
1
2
=
2
.
考点梳理
考点
分析
点评
轴对称-最短路线问题;勾股定理;垂径定理.
(1)作点M关于直线AB的对称点M′,连接M′N交直径AB于点P,则点P即为所求点,M′N的长即为MP+NP的最小值;
(2)连接OM′,ON,先判断出△OM′N的形状,再根据勾股定理求解即可.
本题考查的是轴对称-最短路线问题,熟知两点之间,线段最短是解答此题的关键.
找相似题
(2010·江西)如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为
(6,0)
(6,0)
.
(2009·龙岩)如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为
7
2
7
2
.
(2009·济南)如图,⊙O的半径OA=5cm,若弦AB=8cm,P为AB上一动点,则点P到圆心O的最短距离为
3
3
cm.
(2009·哈尔滨)如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为
8
8
.
(2009·鄂州)在⊙O中,已知⊙O的直径AB为2,弦AC长为
3
,弦AD长为
2
.则DC
2
=
2+
3
或
2-
3
2+
3
或
2-
3
.