试题
题目:
如图所示,同心圆中,大圆的弦AB交小圆于C、D两点,且AC=CD,AB的弦心距等于CD的一半.则这两个同心圆的大小圆的半径之比( )
A.3:1
B.2:
10
C.10:
2
D.
5
:1
答案
D
解:过O作OE⊥AB,交AB于点E,连接OA,OC,如图所示,
由垂径定理得到E为AB的中点,E为CD的中点,
又AB的弦心距等于CD的一半,即OE=CE=ED=
1
2
CD,
∴△OCE为等腰直角三角形,
设CE=OE=x,由勾股定理得到OC=
2
x,
由AC=CD=2CE,得到AC=2x,
则AE=AC+CE=2x+x=3x,
在Rt△AEO中,根据勾股定理得:OA=
A
E
2
+O
E
2
=
10
x,
则这两个同心圆的大小圆的半径之比OA:OC=
10
x:
2
x=
5
:1.
故选D
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
过O作OE⊥AB,交AB于点E,连接OA,OC,如图所示,由垂径定理得到E为AB的中点,E为CD的中点,又AB的弦心距等于CD的一半,即OE=CE=ED=
1
2
CD,可得出三角形COE为等腰直角三角形,设CE=OE=x,利用勾股定理表示出OC,再由AC=CD,表示出AC,由AC+CE表示出AE,在直角三角形AOE中,利用勾股定理表示出OA,即可求出两半径之比.
此题考查了垂径定理,勾股定理,以及等腰直角三角形的判定与性质,熟练掌握定理是解本题的关键.
计算题.
找相似题
(2010·江西)如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为
(6,0)
(6,0)
.
(2009·龙岩)如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为
7
2
7
2
.
(2009·济南)如图,⊙O的半径OA=5cm,若弦AB=8cm,P为AB上一动点,则点P到圆心O的最短距离为
3
3
cm.
(2009·哈尔滨)如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为
8
8
.
(2009·鄂州)在⊙O中,已知⊙O的直径AB为2,弦AC长为
3
,弦AD长为
2
.则DC
2
=
2+
3
或
2-
3
2+
3
或
2-
3
.