试题
题目:
(2013·长春)如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC弧上,则∠ADB的大小为( )
A.46°
B.53°
C.56°
D.71°
答案
C
解:∵∠ABC=71°,∠CAB=53°,
∴∠ACB=180°-∠ABC-∠BAC=56°,
∵弧AB对的圆周角是∠ADB和∠ACB,
∴∠ADB=∠ACB=56°,
故选C.
考点梳理
考点
分析
点评
圆周角定理.
根据三角形内角和定理求出∠ACB,根据圆周角定理得出∠C,求出即可.
本题考查了圆周角定理和三角形内角和定理的应用,关键是求出∠ACB的度数和得出∠ACB=∠ADB.
找相似题
(2013·宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )
(2013·成都)如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为( )