试题
题目:
如图,长方形纸片ABCD沿对角线AC折叠,设点D落在点D′处,BC交AD′于点E,AB=6cm,BC=8cm,则S
阴影
=
75
4
75
4
.
答案
75
4
解:∵△AD′C由△ADC翻折而成,
∴∠EAC=∠DAC,
∵AD∥BC,
∴∠DAC=∠ACB,
∴∠EAC=∠ACB,
∴AE=CE,
设CE=x,则BE=8-x,
在Rt△ABE中,AE
2
=AB
2
+BE
2
,即x
2
=6
2
+(8-x)
2
,解得x=
25
4
,
∴S
阴影
=
1
2
CE·AB=
1
2
×
25
4
×6=
75
4
.
故答案为:
75
4
.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
先根据翻折变换的性质得出∠EAC=∠DAC,再由平行线的性质得出∠DAC=∠ACB,故可得出AE=CE,设CE=x,则BE=8-x,在Rt△ABE中根据勾股定理可求出x的值,进而得出结论.
本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.
找相似题
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
如图,△ABE和△ADC是△ABC分别沿着AB、AC翻折180°形成的,若∠1:∠2:∠3=27:5:4,则∠α的度数是
90°
90°
.
长方形纸片ABCD中,AB=8cm,BC=4cm,现将纸片折叠,使点B与点D重合,GF为折痕.若FC=3cm,则GD=
5cm
5cm
.
新课程改革以来,同学们动手实践和自主探索能力不断加强.如图,边长为10cm的正方形彩纸,按图4中①~④折叠,然后如图④沿虚线剪开时,剩下阴影部分的展开图的形状是
正八边形
正八边形
,其面积为
50
2
c
m
2
50
2
c
m
2
.
如图,EF是正方形ABCD的对折线,将∠A沿DK折叠,使它的顶点A落在EF上的G点,则
∠DKG=
75
75
度.