试题
题目:
(2004·包头)如图,正方形ABCD的边长为6cm,M、N分别为AD、BC边的中点,将点C折至MN上,落在点P处,折痕BQ交MN于点E,则BE的长等于
2
3
2
3
cm.
答案
2
3
解:根据折叠的性质知:BP=BC,∠PBQ=∠CBQ,
∴BN=
1
2
BC=
1
2
BP,
∵∠BNP=90°,
∴∠BPN=30°,
∴∠PBN=90°-30°=60°,
根据翻折不变性,∠QBC=30°,
BN
BE
=cos30°,
3
BE
=
3
2
,
∴BE=2
3
.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
根据折叠的性质知:可知:BN=
1
2
BP,从而可知∠BPN的值,再根据∠PBQ=∠CBQ,可将∠CBQ的角度求出,再利用三角函数求出BE的长.
此题考查了翻折变换,已知折叠问题就是已知图形的全等,根据边之间的关系,可将∠PBQ的度数求出.
计算题;压轴题.
找相似题
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
如图,△ABE和△ADC是△ABC分别沿着AB、AC翻折180°形成的,若∠1:∠2:∠3=27:5:4,则∠α的度数是
90°
90°
.
长方形纸片ABCD中,AB=8cm,BC=4cm,现将纸片折叠,使点B与点D重合,GF为折痕.若FC=3cm,则GD=
5cm
5cm
.
新课程改革以来,同学们动手实践和自主探索能力不断加强.如图,边长为10cm的正方形彩纸,按图4中①~④折叠,然后如图④沿虚线剪开时,剩下阴影部分的展开图的形状是
正八边形
正八边形
,其面积为
50
2
c
m
2
50
2
c
m
2
.
如图,EF是正方形ABCD的对折线,将∠A沿DK折叠,使它的顶点A落在EF上的G点,则
∠DKG=
75
75
度.