试题
题目:
(2006·汾阳市)将一张纸片沿任一方向翻折,得到折痕AB(如图1);再翻折一次,得到折痕OC(如图2);翻折使OA与OC重合,得到折痕OD(如图3);最后翻折使OB与OC重合,得到折痕OE(如图4).展示恢复成图1形状,则∠DOE的大小是
90
90
度.
答案
90
解:通过如图折叠后,展示恢复成图形状,
∠C′OD=∠DOA=∠AOD′=∠D′OC,
∠COE′=∠E′OB∠EOB=∠EOC′
∴4∠C′OD+4∠C′OE=360°
∴∠DOE=∠C′OD+∠C′OE=90°.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
折叠后,展示恢复成图形状,然后根据折叠的性质:对应角相等计算.
本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.注意图中OB是向纸的背面折叠的.
找相似题
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
如图,△ABE和△ADC是△ABC分别沿着AB、AC翻折180°形成的,若∠1:∠2:∠3=27:5:4,则∠α的度数是
90°
90°
.
长方形纸片ABCD中,AB=8cm,BC=4cm,现将纸片折叠,使点B与点D重合,GF为折痕.若FC=3cm,则GD=
5cm
5cm
.
新课程改革以来,同学们动手实践和自主探索能力不断加强.如图,边长为10cm的正方形彩纸,按图4中①~④折叠,然后如图④沿虚线剪开时,剩下阴影部分的展开图的形状是
正八边形
正八边形
,其面积为
50
2
c
m
2
50
2
c
m
2
.
如图,EF是正方形ABCD的对折线,将∠A沿DK折叠,使它的顶点A落在EF上的G点,则
∠DKG=
75
75
度.