试题
题目:
(2006·威海)如图,梯形纸片ABCD,已知AB∥CD,AD=BC,AB=6,CD=3.将该梯形纸片沿对角线AC折叠,点D恰与AB边上的E点重合,则∠B=
60
60
度.
答案
60
解:∵AB∥CD
∴∠D+∠DAB=180°
∵CD=CE=3,∠D=∠AEC=180°-∠CEB
∴∠DAE=∠CEB
∴CE∥AD
∴四边形CDAE是平行四边形
∴AD=CE=CB=3,
∴AE=AD=3
∴BE=AB-AE=3
∴BE=CE=BC
即△CEB是等边三角形
∴∠B=60°.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
由折叠的性质知CD=CE=3,∠D=∠AEC=180°-∠CEB,易证明四边形CDAE是平行四边形,根据平行四边形的性质可得BE=CE=BC,判定△CEB是等边三角形,则有∠B=60°.
本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、平行四边形和等边三角形的判定和性质求解.
应用题.
找相似题
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
如图,△ABE和△ADC是△ABC分别沿着AB、AC翻折180°形成的,若∠1:∠2:∠3=27:5:4,则∠α的度数是
90°
90°
.
长方形纸片ABCD中,AB=8cm,BC=4cm,现将纸片折叠,使点B与点D重合,GF为折痕.若FC=3cm,则GD=
5cm
5cm
.
新课程改革以来,同学们动手实践和自主探索能力不断加强.如图,边长为10cm的正方形彩纸,按图4中①~④折叠,然后如图④沿虚线剪开时,剩下阴影部分的展开图的形状是
正八边形
正八边形
,其面积为
50
2
c
m
2
50
2
c
m
2
.
如图,EF是正方形ABCD的对折线,将∠A沿DK折叠,使它的顶点A落在EF上的G点,则
∠DKG=
75
75
度.