试题
题目:
(2007·襄阳)如图,在矩形ABCD中,AB=16,BC=8,将矩形沿AC折叠,点D落在点E处,且CE与AB交于F,那么AF=
10
10
.
答案
10
解:由折叠的性质可得到△AEC≌△CBA·∠ACF=∠CAF·AF=CF,
在Rt△CFB中,由勾股定理得CB
2
+BF
2
=CF
2
,
即8
2
+(16-AF)
2
=AF
2
,
解得AF=10.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
先判定三角形全等再根据勾股定理可知.
本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;
②全等三角形的判定和性质,等边对等角,勾股定理求解.
压轴题.
找相似题
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
如图,△ABE和△ADC是△ABC分别沿着AB、AC翻折180°形成的,若∠1:∠2:∠3=27:5:4,则∠α的度数是
90°
90°
.
长方形纸片ABCD中,AB=8cm,BC=4cm,现将纸片折叠,使点B与点D重合,GF为折痕.若FC=3cm,则GD=
5cm
5cm
.
新课程改革以来,同学们动手实践和自主探索能力不断加强.如图,边长为10cm的正方形彩纸,按图4中①~④折叠,然后如图④沿虚线剪开时,剩下阴影部分的展开图的形状是
正八边形
正八边形
,其面积为
50
2
c
m
2
50
2
c
m
2
.
如图,EF是正方形ABCD的对折线,将∠A沿DK折叠,使它的顶点A落在EF上的G点,则
∠DKG=
75
75
度.