试题
题目:
(2010·厦门)如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D的直线折叠,使点A落在BC边上,落点为E,折痕交AB边交于点F.若BE=1,EC=2,则sin∠EDC=
2
3
2
3
;若BE:EC=m:n,则AF:FB=
m+n
n
m+n
n
(用含有m、n的代数式表示).
答案
2
3
m+n
n
解:∵BE=1,EC=2,∴BC=3.
∵BC=AD=DE,∴DE=3.
sin∠EDC=
EC
DE
=
2
3
;
∵∠DEF=90°,∴∠BEF+∠CED=90°.
又∠BEF+∠BFE=90°,
∴∠BFE=∠CED.又∠B=∠C,
∴△BEF∽△CDE.
∴EF:FB=DE:EC.
∵BE:EC=m:n,
∴可设BE=mk,EC=nk,则DE=(m+n)k.
∴EF:FB=DE:EC=
(m+n)k
nk
=
m+n
n
.
∵AF=EF,
∴AF:FB=
m+n
n
.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
①根据题意,BC=3=AD=DE,根据三角函数定义易求sin∠EDC;
②AF:FB=EF:FB.证明△BEF∽△CDE可得EF:FB=DE:EC,由BE:EC=m:n可求解.
此题通过折叠变换考查了三角形的有关知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,注意对应相等关系.
压轴题.
找相似题
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
如图,△ABE和△ADC是△ABC分别沿着AB、AC翻折180°形成的,若∠1:∠2:∠3=27:5:4,则∠α的度数是
90°
90°
.
长方形纸片ABCD中,AB=8cm,BC=4cm,现将纸片折叠,使点B与点D重合,GF为折痕.若FC=3cm,则GD=
5cm
5cm
.
新课程改革以来,同学们动手实践和自主探索能力不断加强.如图,边长为10cm的正方形彩纸,按图4中①~④折叠,然后如图④沿虚线剪开时,剩下阴影部分的展开图的形状是
正八边形
正八边形
,其面积为
50
2
c
m
2
50
2
c
m
2
.
如图,EF是正方形ABCD的对折线,将∠A沿DK折叠,使它的顶点A落在EF上的G点,则
∠DKG=
75
75
度.