试题
题目:
如图,将长方形纸片的两角分别折叠,使顶点B落在B′处,顶点A落在A′处,EC、ED为折痕,并且点E、A′、B′在同一条直线上.若∠BED=32°,求∠CED和∠AEC的度数.
答案
解:∵EC和ED是折痕,
∴∠1=∠2,∠3=∠4,
又∵∠1+∠2+∠3+∠4=180°,
∴2(∠2+∠3)=180°,
∴∠2+∠3=90°,
即∠CED=90°.
又∠2=∠1=32°,
∴∠4=∠3=90°-∠1=90°-32°=58°,
即∠AEC=58°.
解:∵EC和ED是折痕,
∴∠1=∠2,∠3=∠4,
又∵∠1+∠2+∠3+∠4=180°,
∴2(∠2+∠3)=180°,
∴∠2+∠3=90°,
即∠CED=90°.
又∠2=∠1=32°,
∴∠4=∠3=90°-∠1=90°-32°=58°,
即∠AEC=58°.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);角平分线的定义;角的计算.
根据翻折的性质,只要证明∠2+∠3=90°即可;根据∠2+∠3=90°及对角线知识可求得∠CED.
本题考查翻折变换的知识,折叠问题要重视折痕,找清折痕两边重合的部分,即相等的边,相等的角有哪些,找准这些关系对解决题目有很大帮助.
计算题.
找相似题
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
如图,△ABE和△ADC是△ABC分别沿着AB、AC翻折180°形成的,若∠1:∠2:∠3=27:5:4,则∠α的度数是
90°
90°
.
长方形纸片ABCD中,AB=8cm,BC=4cm,现将纸片折叠,使点B与点D重合,GF为折痕.若FC=3cm,则GD=
5cm
5cm
.
新课程改革以来,同学们动手实践和自主探索能力不断加强.如图,边长为10cm的正方形彩纸,按图4中①~④折叠,然后如图④沿虚线剪开时,剩下阴影部分的展开图的形状是
正八边形
正八边形
,其面积为
50
2
c
m
2
50
2
c
m
2
.
如图,EF是正方形ABCD的对折线,将∠A沿DK折叠,使它的顶点A落在EF上的G点,则
∠DKG=
75
75
度.