试题
题目:
(2012·高淳县一模)如图,一张矩形纸片ABCD中,AD>AB.将矩形纸片ABCD沿过点A的直线折叠,使点D落到BC边上的点D′,折痕AE交DC于点E.
(1)试用尺规在图中作出点D′和折痕AE(不写作法,保留作图痕迹);
(2)连接DD′、AD′、ED′,则当∠ED′C=
30
30
°时,△AD′D为等边三角形;
(3)若AD=5,AB=4,求ED的长.
答案
30
解:(1)如图所示:
(2)当∠ED′C=30°时,
∵DE=D′E,∴∠ED′D=∠D′DE,
∵∠ED′C=30°,
∠ED′D+∠D′DE+∠ED′C=90°,
∴∠ED′D=∠D′DE=30°,
∴∠ADD′=60°,
∵AD=AD′,
∴△AD′D为等边三角形,
故答案为:30;
(3)∵AD=5,AB=4,
∴AD′=5,
∴BD′=
AD
′
2
-A
B
2
=3,
∴CD′=5-3=2,
设DE=D′E=x,
则EC=4-x,
故EC
2
+D
′
C
2
=D
′
E
2
,
即(4-x)
2
+2
2
=x
2
,
解得:x=
5
2
,
故ED的长为:
5
2
.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
(1)以AD长为半径画弧与BC交于点D′,再做出∠DAD′的平分线,即可得出符合要求的图形;
(2)利用等边三角形的判定,得出当∠ED′C=30°时,△AD′D为等边三角形;
(3)利用勾股定理以及翻折变换性质得出DE=D′E=x,EC=4-x,进而得出即可.
此题主要考查了图形的翻折变换以及勾股定理和基本作图,熟练应用翻折变换图形翻折前后图形不变是解决问题的关键.
找相似题
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
如图,△ABE和△ADC是△ABC分别沿着AB、AC翻折180°形成的,若∠1:∠2:∠3=27:5:4,则∠α的度数是
90°
90°
.
长方形纸片ABCD中,AB=8cm,BC=4cm,现将纸片折叠,使点B与点D重合,GF为折痕.若FC=3cm,则GD=
5cm
5cm
.
新课程改革以来,同学们动手实践和自主探索能力不断加强.如图,边长为10cm的正方形彩纸,按图4中①~④折叠,然后如图④沿虚线剪开时,剩下阴影部分的展开图的形状是
正八边形
正八边形
,其面积为
50
2
c
m
2
50
2
c
m
2
.
如图,EF是正方形ABCD的对折线,将∠A沿DK折叠,使它的顶点A落在EF上的G点,则
∠DKG=
75
75
度.