试题
题目:
你能根据图形所给的信息验证勾股定理吗?请写出证明过程.
答案
解:根据题意,中间小正方形的面积c
2
=(a+b)
2
-4×
1
2
×ab=a
2
+b
2
;
即在直角三角形中斜边的平方等于两直角边的平方和.
解:根据题意,中间小正方形的面积c
2
=(a+b)
2
-4×
1
2
×ab=a
2
+b
2
;
即在直角三角形中斜边的平方等于两直角边的平方和.
考点梳理
考点
分析
点评
专题
勾股定理的证明.
根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.
本题考查了学生对勾股定理的证明和对三角形、正方形面积公式的熟练掌握和运用.
证明题.
找相似题
如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为40,小正方形的面积为5,则(a+b)
2
的值为( )
如图,这是我国古代一个数学家构造的“勾股圆方图”(见课本第76页),他第一个利用此图证明了“勾股定理”.这个数学家是( )
利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证( )公式.
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a-b)
2
的值是( )
(2010·温州)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边PQ上,那么△PQR的周长等于
27+13
3
27+13
3
.