试题
题目:
如图,△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC,BE⊥CE,垂足E在BD的延长线上,
(1)延长BA和CE,交点为点F:
①在图上作图,并标出点F;
②证明△ACF≌△ABD;
(2)试探究线段CE和BD的关系,并证明你的结论.
答案
(1)①如图:
②证明:∵∠BAC=90°,BE⊥CE,
∴∠CDE=∠F,
∵∠BDA=∠CDE,
∴∠BDA=∠F,
在△ACF和△ABD,
∠F=∠ADB
∠BAD=∠CAF
AC=AB
,
∴△ACF≌△ABD(AAS);
(2)2CE=BD
证明:∵BD平分∠ABC,BE⊥CE,
∴∠A BD=∠CBE,∠BEF=∠BEC=90°,
在△BFE和△BCE中,
∠ABD=∠CBE
BE=EB
∠BEF=∠BEC
,
∴△BFE≌△BCE(ASA);
∴EF=CE,
∴2CE=CF,
∵△ACF≌△ABD;
∴CF=BD,
∴2CE=BD.
(1)①如图:
②证明:∵∠BAC=90°,BE⊥CE,
∴∠CDE=∠F,
∵∠BDA=∠CDE,
∴∠BDA=∠F,
在△ACF和△ABD,
∠F=∠ADB
∠BAD=∠CAF
AC=AB
,
∴△ACF≌△ABD(AAS);
(2)2CE=BD
证明:∵BD平分∠ABC,BE⊥CE,
∴∠A BD=∠CBE,∠BEF=∠BEC=90°,
在△BFE和△BCE中,
∠ABD=∠CBE
BE=EB
∠BEF=∠BEC
,
∴△BFE≌△BCE(ASA);
∴EF=CE,
∴2CE=CF,
∵△ACF≌△ABD;
∴CF=BD,
∴2CE=BD.
考点梳理
考点
分析
点评
全等三角形的判定与性质;等腰直角三角形.
(1)①根据延长线的作法直接得出答案;
②利用全等三角形的判定AAS进而得出答案;
(2)利用全等三角形的判定得出△BFE≌△BCE(ASA),进而得出EF=CE,再利用CF=BD得出答案.
此题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.
找相似题
(2013·重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )